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Bose-Einstein Condensation

• 1924 Bose and Einstein discover a completely new type of phase
transition in an ideal quantum gas.

• Macroscopic occupation of a common quantum state at low
temperatures.

• Related large scale quantum effects: superfluidity, quantized
vortices.

• Experimental realization by Cornell, Wieman and Ketterle 1995.
• 2001 Nobel Prize in Physics.

2



Crash course on BEC

• Consider an ideal gas of N bosons at T > 0 in a box with p.b.c.
• Bose-Einstein distribution:

γid(p) = 1
exp((p2 − µ0)/T ) − 1

describes the expected number of particles with momentum p
• on the other hand

∑
p γ

id(p) = N (fixed by the chemical potential)
• for every p ̸= 0 and µ0 < 0 we have γid(p) → 0 as T → 0
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BEC phase transition

• in the thermodynamic limit, i.e. N,V → ∞,N/V = ρ = const

ρ = 1
V

∑
p
γid(p) −−−−→

V →∞

∫
γid(p)dp ⩽

∫
γid(p)

∣∣∣
µ0=0

dp =: ρcr (T )

• thus ρ ⩽ ρcr (T ) −−−→
T→0

0. What is wrong?
• Below critical temperature macroscopic occupation of p = 0

mode:
γid(0) = 1

exp(−βµ0) − 1 ∼ O(N)

• Second order phase transition
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Some abstract nonsense...

• What about interacting systems?
• in quantum statistical mechanics the equilibrium is described by

Gibbs state
GN = e−βHN

TrhN e−βHN

• HN - N-body Hamiltonian, hN - N-body Hilbert space
• expectation values

⟨A⟩ = Tr(AGN)
• Bose-Einstein distribution is just ⟨a∗

pap⟩ for the ideal gas...
• ...which is just the diagonal of the one-body density matrix

γ
(1)
GN

= N Tr2→N [GN ]

Definition
A sequence of states GN displays Bose–Einstein condensation iff

lim inf
N→∞

sup
∥ψ∥2=1

⟨ψ, γ(1)
GN
ψ⟩

N > 0
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Definition of BEC

• Many-body Hamiltonian (again, box with p.b.c)

HN =
N∑

i=1
−∆i +

∑
1⩽i<j⩽N

w(xi − xj)

Proving BEC in the thermodynamic limit remains open problem!

• even in the ground state!
• simpler models: mean-field (MF) scaling: fixed size of box

HN =
N∑

i=1
−∆i + 1

N
∑

1⩽i<j⩽N
w(xi − xj)

• BEC proven in MF: T = 0 Lieb, Seiringer 2002, T > 0
Deuchert, Seiringer 2020
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Spontaneous Symmetry Breaking (SSB)

There is SSB if a symmetry of the Hamiltonian (or Lagrangian) of a
system is not present in the state under consideration (usually a ground

state or a thermal equilibrium state).

• Crucial concept in Quantum Field Theory (Nambu, Goldsotne,
Higgs...) and Statistical Physics (Anderson, Mermin, Wagner,
Hohenberg, ...).

• Paradigm of statistical physics:
Phase transitions are accompanied by SSB.

• Simple example to keep in mind: magnetization below Curie point.
• Hard to prove! Limited results: Dyson, Lieb, Simon, Fröhlich,

Spencer, Bałaban, ... (all for lattice models)
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SSB in Bose gas

• U(1) symmetry of the Bose gas due to particle number
conservation.

• second quantized Hamiltonian (momentum basis)

H =
∑
p∈Λ∗

p2a∗
pap + 1

2|Λ|
∑

p,u,v∈Λ∗

ŵ(p)a∗
u+pa∗

v−pauav

• invariant under the transformation

ap 7→ e iτap, ∀p

• Consequently, its Gibbs state has a definite number of particles.
• Gauge invariance of a Bose gas is spontaneously broken when:

⟨a0⟩q−a ̸= 0
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Bogoliubov quasi-averages

Bogoliubov 1961 introduces quasi-averages which provide a
mathematical scheme how to describe SSB in statistical mechanics:

1. couple the Hamiltonian with a symmetry breaking term

Hλ = H + λ
√

|Λ|(a∗
0 + a0)

2. consider the expectation values in the perturbed Hamiltonian

⟨A⟩λ = Tr(AGλ)

where

Gλ = e−β(Hλ−µN )

Tr e−β(Hλ−µN )

3. a quasi-average of the observable A is then

⟨A⟩q−a := lim
λ→0

lim
|Λ|→∞

⟨A⟩λ
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Grand canonical mean-field gas

• Box fixed, number of particles N → ∞

N0(β,N) = 1
exp(−βµ0) − 1 ≃ N

[
1 −

(
βc

β

)3/2
]

+

, βc = cN−2/3

• Interesting parameter regime is when T ≈ N2/3.
• we will work in the grand canonical ensemble

Hη =
∑
p∈Λ∗

p2a∗
pap + 1

2η
∑

p,u,v∈Λ∗

ŵ(p)a∗
u+pa∗

v−pauav

• weak coupling given by η → ∞
• scaling regime: β ∼ η−2/3, −η2/3 ≲ µ ≲ 1
• unperturbed Gibbs state

Gβ,µ = exp (−β(Hη − µN ))
Tr exp (−β(Hη − µN )) ,

• N(β, µ) = Tr[N Gβ,µ] = we prove = cη + o(η)

10



Perturbed Gibbs state

• we introduce the symmetry breaking term

Hλ
η = Hη + λN(β, µ)1/2(a0 + a∗

0)

• and the perturbed Gibbs state

Gλ
β,µ =

exp
(
−β(Hλ

η − µN )
)

Tr exp
(
−β(Hλ

η − µN )
) .

• We introduce a critical temperature

βc(µ, η) :=


1

4π

(
µ η

v̂(0)ζ(3/2)

)−2/3
if µ > 0,

+∞ if µ ⩽ 0.

• Finally, we define
κ := lim

η→∞
β/βc(µ, η).

11



A rigorous result...

Theorem (Deuchert, Nam, N. 2025)
Under the assumptions stated above we have

• Bose-Einstein condensation

lim
η→∞

sup
∥ψ∥=1

⟨ψ, γβ,µψ⟩
N(β, µ) = lim

η→∞

Tr[a∗
0a0Gβ,µ]

N(β, µ) =
[
1 − 1

κ3/2

]
+
.

• Spontaneous symmetry breaking

lim
λ→0

lim
η→∞

| Tr[a0Gλ
β,µ]|

N(β, µ)1/2 =

√[
1 − 1

κ3/2

]
+
.

• Continuity of the condensate fraction at λ = 0

lim
λ→0

lim
η→∞

| Tr[a∗
0a0Gλ

β,µ]|
N(β, µ) =

[
1 − 1

κ3/2

]
+
.
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Relation between SSB and BEC

• as mentioned earlier proof of BEC in the thermodynamic limit
remains open;

• quasi-averages scheme the same, but limit V → ∞;
• Lieb, Seiringer, Yngvason 2005, Süto 2005 proved that

BECTL =⇒ (BEC)TL
q−a ⇐⇒ SSBTL

• for the mean-field model we prove full equivalence which follows
from the first two statements in the Theorem

BECMF ⇐⇒ (BEC)MF
q−a ⇐⇒ SSBMF
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Remarks on the proof

• the proof relies on an expansion for the grand potential

Φ(β, µ) = − 1
β

ln (Tr exp(−β(Hη − µN )))

• more precisely: perturbed (by δ1(a∗
0 + a0) and δ2a∗

0a0) grand
potential

• we use a variational approach: Φ(β, µ) = minΓ∈S G(Γ)

G(Γ) = Tr[(Hη − µN )Γ] − 1
β

S(Γ) with S(Γ) = − Tr[Γ ln(Γ)].

• upper bound: trial state

Γtrial = |
√

N0(β, µ̃)⟩⟨
√

N0(β, µ̃)| ⊗ G id
+ (β, µ̃)

• lower bound: Onsager lemma, c-number substitution and entropic
inequalities

• final proof by Griffith’s argument
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Resume

Conclusions:

• BEC phase transition is accompanied by U(1) symmetry breaking;
• we prove this fact for the mean-field Bose gas;
• we prove BEC and SSB are equivalent.

Outlook

• superfluidity, i.e. ⟨apa−p⟩;
• relation between superfluidity and BEC;
• thermodynamic limit :)
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Thank you for your attention!
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