Bose-Einstein Condensation and Spontaneous Symmetry Breaking

Marcin Napiórkowski

University of Warsaw

20th Colloquium on Mathematics and Foundations of Quantum Theory April 8th, 2025

joint work with A. Deuchert (Virginia Tech) and P.T. Nam (LMU)

Bose-Einstein Condensation

- 1924 Bose and Einstein discover a completely new type of phase transition in an ideal quantum gas.
- Macroscopic occupation of a common quantum state at low temperatures.
- Related large scale quantum effects: superfluidity, quantized vortices.
- Experimental realization by Cornell, Wieman and Ketterle 1995.
- 2001 Nobel Prize in Physics.

Crash course on BEC

- Consider an ideal gas of N bosons at T > 0 in a box with p.b.c.
- Bose-Einstein distribution:

$$\gamma^{\rm id}(p) = \frac{1}{\exp((p^2 - \mu_0)/T) - 1}$$

describes the expected number of particles with momentum p

- on the other hand $\sum_p \gamma^{\mathrm{id}}(p) = N$ (fixed by the chemical potential)
- for every p
 eq 0 and $\mu_0 < 0$ we have $\gamma^{\mathrm{id}}(p)
 ightarrow 0$ as T
 ightarrow 0

BEC phase transition

• in the thermodynamic limit, i.e. $N, V \rightarrow \infty, N/V = \rho = const$

$$\rho = \frac{1}{V} \sum_{p} \gamma^{\mathrm{id}}(p) \xrightarrow[V \to \infty]{} \int \gamma^{\mathrm{id}}(p) dp \leq \int \gamma^{\mathrm{id}}(p) \Big|_{\mu_0 = 0} dp =: \rho_{cr}(T)$$

- thus $\rho \leq \rho_{cr}(T) \xrightarrow[T \to 0]{} 0$. What is wrong?
- Below critical temperature macroscopic occupation of p = 0 mode:

$$\gamma^{\mathrm{id}}(0) = rac{1}{\exp(-eta \mu_0) - 1} \sim O(N)$$

Second order phase transition

Some abstract nonsense...

- What about interacting systems?
- in quantum statistical mechanics the equilibrium is described by Gibbs state

$$G_N = rac{e^{-eta \mathcal{H}_N}}{\operatorname{Tr}_{\mathfrak{h}^N} e^{-eta \mathcal{H}_N}}$$

- \mathcal{H}_N *N*-body Hamiltonian, \mathfrak{h}^N *N*-body Hilbert space
- expectation values

$$\langle A \rangle = \operatorname{Tr}(AG_N)$$

- Bose-Einstein distribution is just $\langle a_p^* a_p \rangle$ for the ideal gas...
- ...which is just the diagonal of the one-body density matrix

$$\gamma_{G_N}^{(1)} = N \operatorname{Tr}_{2 \to N}[G_N]$$

Definition

A sequence of states G_N displays **Bose–Einstein condensation** iff

$$\liminf_{N \to \infty} \sup_{\|\psi\|_{2}=1} \frac{\langle \psi, \gamma_{G_{N}}^{(1)} \psi \rangle}{N} > 0$$

Definition of BEC

Many-body Hamiltonian (again, box with p.b.c)

$$\mathcal{H}_N = \sum_{i=1}^N -\Delta_i + \sum_{1 \leq i < j \leq N} w(x_i - x_j)$$

Proving BEC in the thermodynamic limit remains open problem!

- even in the ground state!
- simpler models: mean-field (MF) scaling: fixed size of box

$$\mathcal{H}_N = \sum_{i=1}^N -\Delta_i + \frac{1}{N} \sum_{1 \leqslant i < j \leqslant N} w(x_i - x_j)$$

BEC proven in MF: T = 0 Lieb, Seiringer 2002, T > 0
 Deuchert, Seiringer 2020

There is SSB if a symmetry of the Hamiltonian (or Lagrangian) of a system is not present in the state under consideration (usually a ground state or a thermal equilibrium state).

- Crucial concept in Quantum Field Theory (Nambu, Goldsotne, Higgs...) and Statistical Physics (Anderson, Mermin, Wagner, Hohenberg, ...).
- **Paradigm** of statistical physics:

Phase transitions are accompanied by SSB.

- Simple example to keep in mind: magnetization below Curie point.
- Hard to prove! Limited results: Dyson, Lieb, Simon, Fröhlich, Spencer, Bałaban, ... (all for lattice models)

- *U*(1) symmetry of the Bose gas due to **particle number conservation**.
- second quantized Hamiltonian (momentum basis)

$$\mathcal{H} = \sum_{p \in \Lambda^*} p^2 a_p^* a_p + \frac{1}{2|\Lambda|} \sum_{p,u,v \in \Lambda^*} \hat{w}(p) a_{u+p}^* a_{v-p}^* a_u a_v$$

invariant under the transformation

$$a_p\mapsto e^{i\tau}a_p,\qquad \forall p$$

- Consequently, its Gibbs state has a definite number of particles.
- Gauge invariance of a Bose gas is spontaneously broken when:

$$\langle a_0 \rangle_{q-a} \neq 0$$

Bogoliubov quasi-averages

Bogoliubov 1961 introduces **quasi-averages** which provide a mathematical scheme how to describe SSB in statistical mechanics:

1. couple the Hamiltonian with a symmetry breaking term

$$\mathcal{H}^{\lambda} = \mathcal{H} + \lambda \sqrt{|\Lambda|} (a_0^* + a_0)$$

2. consider the expectation values in the perturbed Hamiltonian

$$\langle A
angle_{\lambda} = \mathsf{Tr}(AG^{\lambda})$$

where

$$G^{\lambda} = rac{e^{-eta(\mathcal{H}^{\lambda}-\mu\mathcal{N})}}{\operatorname{\mathsf{Tr}} e^{-eta(\mathcal{H}^{\lambda}-\mu\mathcal{N})}}$$

3. a **quasi-average** of the observable A is then

$$\langle A \rangle_{q-a} := \lim_{\lambda \to 0} \lim_{|\Lambda| \to \infty} \langle A \rangle_{\lambda}$$

Grand canonical mean-field gas

• Box fixed, number of particles $N
ightarrow \infty$

$$N_0(\beta, N) = \frac{1}{\exp(-\beta\mu_0) - 1} \simeq N \left[1 - \left(\frac{\beta_c}{\beta}\right)^{3/2} \right]_+, \beta_c = c N^{-2/3}$$

- Interesting parameter regime is when $T \approx N^{2/3}$.
- we will work in the grand canonical ensemble

$$\mathcal{H}_{\eta} = \sum_{p \in \Lambda^*} p^2 a_p^* a_p + \frac{1}{2\eta} \sum_{p,u,v \in \Lambda^*} \hat{w}(p) a_{u+p}^* a_{v-p}^* a_u a_v$$

- weak coupling given by $\eta \to \infty$
- scaling regime: $\beta \sim \eta^{-2/3}$, $-\eta^{2/3} \lesssim \mu \lesssim 1$
- unperturbed Gibbs state

$$G_{\beta,\mu} = rac{\exp\left(-eta(\mathcal{H}_{\eta}-\mu\mathcal{N})
ight)}{\operatorname{\mathsf{Tr}}\exp\left(-eta(\mathcal{H}_{\eta}-\mu\mathcal{N})
ight)},$$

• $N(\beta, \mu) = \text{Tr}[\mathcal{N}G_{\beta,\mu}] = \text{we prove} = c\eta + o(\eta)$

Perturbed Gibbs state

• we introduce the symmetry breaking term

$$\mathcal{H}_{\eta}^{\lambda} = \mathcal{H}_{\eta} + \lambda \mathcal{N}(\beta, \mu)^{1/2} (\mathbf{a}_{0} + \mathbf{a}_{0}^{*})$$

and the perturbed Gibbs state

$$G^{\lambda}_{eta,\mu} = rac{\exp\left(-eta(\mathcal{H}^{\lambda}_{\eta}-\mu\mathcal{N})
ight)}{\operatorname{\mathsf{Tr}}\exp\left(-eta(\mathcal{H}^{\lambda}_{\eta}-\mu\mathcal{N})
ight)}.$$

We introduce a critical temperature

$$\beta_{\mathrm{c}}(\mu,\eta) := \begin{cases} \frac{1}{4\pi} \left(\frac{\mu \eta}{\hat{v}(0)\zeta(3/2)} \right)^{-2/3} & \text{ if } \mu > 0, \\ +\infty & \text{ if } \mu \leqslant 0. \end{cases}$$

Finally, we define

$$\kappa := \lim_{\eta \to \infty} \beta / \beta_{\rm c}(\mu, \eta).$$

A rigorous result...

Theorem (Deuchert, Nam, N. 2025)

Under the assumptions stated above we have

Bose-Einstein condensation

$$\lim_{\eta \to \infty} \sup_{\|\psi\|=1} \frac{\langle \psi, \gamma_{\beta,\mu} \psi \rangle}{\mathsf{N}(\beta,\mu)} = \lim_{\eta \to \infty} \frac{\mathsf{Tr}[\mathsf{a}_0^*\mathsf{a}_0 \mathsf{G}_{\beta,\mu}]}{\mathsf{N}(\beta,\mu)} = \left[1 - \frac{1}{\kappa^{3/2}}\right]_+.$$

Spontaneous symmetry breaking

$$\lim_{\lambda \to 0} \lim_{\eta \to \infty} \frac{|\operatorname{Tr}[a_0 G_{\beta,\mu}^{\lambda}]|}{N(\beta,\mu)^{1/2}} = \sqrt{\left[1 - \frac{1}{\kappa^{3/2}}\right]_+}.$$

- Continuity of the condensate fraction at $\lambda=0$

$$\lim_{\lambda \to 0} \lim_{\eta \to \infty} \frac{|\operatorname{Tr}[a_0^* a_0 G_{\beta,\mu}^{\lambda}]|}{N(\beta,\mu)} = \left[1 - \frac{1}{\kappa^{3/2}}\right]_+$$

- as mentioned earlier proof of BEC in the thermodynamic limit remains open;
- quasi-averages scheme the same, but limit $V \to \infty$;
- Lieb, Seiringer, Yngvason 2005, Süto 2005 proved that

$$\mathsf{BEC}^{\mathsf{TL}} \Longrightarrow (\mathsf{BEC})_{q-a}^{\mathsf{TL}} \iff SSB^{\mathsf{TL}}$$

• for the **mean-field model** we prove **full equivalence** which follows from the first two statements in the Theorem

$$\mathsf{BEC}^{MF} \iff (\mathsf{BEC})_{q-a}^{MF} \iff SSB^{MF}$$

Remarks on the proof

• the proof relies on an expansion for the grand potential

$$\Phi(eta,\mu) = -rac{1}{eta} \ln \left(\operatorname{Tr} \exp(-eta(\mathcal{H}_\eta - \mu \mathcal{N})) \right)$$

- more precisely: perturbed (by $\delta_1(a_0^* + a_0)$ and $\delta_2 a_0^* a_0$) grand potential
- we use a variational approach: $\Phi(\beta, \mu) = \min_{\Gamma \in S} \mathcal{G}(\Gamma)$

$$\mathcal{G}(\Gamma) = \mathsf{Tr}[(\mathcal{H}_\eta - \mu \mathcal{N})\Gamma] - rac{1}{eta}S(\Gamma) \quad ext{with} \quad S(\Gamma) = -\operatorname{Tr}[\Gamma \ln(\Gamma)].$$

upper bound: trial state

$$\Gamma^{\text{trial}} = |\sqrt{N_0(\beta,\widetilde{\mu})}\rangle \langle \sqrt{N_0(\beta,\widetilde{\mu})}| \otimes G^{\text{id}}_+(\beta,\widetilde{\mu})$$

- lower bound: Onsager lemma, *c*-number substitution and entropic inequalities
- final proof by Griffith's argument

Conclusions:

- BEC phase transition is accompanied by U(1) symmetry breaking;
- we prove this fact for the mean-field Bose gas;
- we prove BEC and SSB are equivalent.

Outlook

- superfluidity, i.e. (a_pa_{-p});
- relation between superfluidity and BEC;
- thermodynamic limit :)

Thank you for your attention!