Entanglement and separable states in relativistic OFT

Ko Sanders

Colloquium on Mathematics and Foundations of Quantum Theory, Poznań, 8 April 2025

KS, J. Phys. A: Math. Theor. **56** 505201 (2023) Hollands-KS, Springer Briefs in Mathematical Physics Vol. 34 (2018)

102

Leibniz Universität Hannover

Ko Sanders 1/24

Contents

- Physical motivation: entanglement in QFT
- Entanglement entropy in QM and QFT
- Separable states in relativistic QFT
- Symmetric separable states
- Conclusions and outlook

Physical motivation: entanglement in QFT

Ko Sanders 3/24

A brief history of entanglement

Entanglement is the characteristic trait of QM. (Schrödinger, 1935)

1930-1935: Entanglement is discovered. (Schrödinger, Einstein)

1935: The EPR paradox uses entanglement to argue that QM is

- a incomplete: there must be hidden variables, or
- non-local: correlations between measurement outcomes at spacelike separation without prior common causes.

Option b was unacceptable to Einstein.

1964: Bell derives the Bell inequality, which is

- satisfied by all (realist, local) hidden variable theories, but
- sometimes violated by quantum mechanics.

Option 2+EPR entails that nature (and QM) is non-local.

A brief history of entanglement

Entanglement is the characteristic trait of QM. (Schrödinger, 1935)

1930-1935: Entanglement is discovered. (Schrödinger, Einstein)

1935: The EPR paradox uses entanglement to argue that QM is

- incomplete: there must be hidden variables, or
- non-local: correlations between measurement outcomes at spacelike separation without prior common causes.

Option b was unacceptable to Einstein.

1964: Bell derives the Bell inequality, which is

- satisfied by all (realist, local) hidden variable theories, but
- sometimes violated by quantum mechanics

Option 2+EPR entails that nature (and QM) is non-local.

□ → ◆□ → ◆ = → ◆ = → ○

A brief history of entanglement

Entanglement is the characteristic trait of QM. (Schrödinger, 1935)

1930-1935: Entanglement is discovered. (Schrödinger, Einstein)

1935: The EPR paradox uses entanglement to argue that QM is

- incomplete: there must be hidden variables, or
- o non-local: correlations between measurement outcomes at spacelike separation without prior common causes.

Option b was unacceptable to Einstein.

1964: Bell derives the Bell inequality, which is

- satisfied by all (realist, local) hidden variable theories, but
- sometimes violated by quantum mechanics.

Option 2+EPR entails that nature (and QM) is non-local.

What nature has to say

1970's - 2000's: Experimental tests confirm the violation of Bell's inequalities under ever more stringent conditions.

2022 Nobel Prize in Physics for Aspect, Clauser and Zeilinger.

→ Nature is non-local!

Ko Sanders

What nature has to say

1970's - 2000's: Experimental tests confirm the violation of Bell's inequalities under ever more stringent conditions.

2022 Nobel Prize in Physics for Aspect, Clauser and Zeilinger.

→ Nature is non-local!*

- *To keep track of the localisation of observables we use QFTs.
- 1961: The Reeh-Schlieder Theorem indicates that vacuum states of Wightman QFTs are entangled between all regions of space.
- → Entanglement is the rule, rather that an exception.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 めぬぐ

What to do about non-locality?

- Standard QM and QFT: Non-locality enters through measurement outcomes, but there is no communication faster than light. (Causal structure not violated by quantum experiment.)
 - → Some uneasiness about the lack of realistic interpretations and the special rôle of measurements.

What to do about non-locality?

- Standard QM and QFT: Non-locality enters through measurement outcomes, but there is no communication faster than light. (Causal structure not violated by quantum experiment.)
 - → Some uneasiness about the lack of realistic interpretations and the special rôle of measurements.
- Bohmian mechanics: Non-local dynamics in spacetime, completing QM by adding particle positions (but not momenta) as hidden variables.
 - → Difficult to extend to relativistic QFT.

What to do about non-locality?

Spacetime is emergent:
Pointlike localisation is not fundamental, but an effective property

that emerges only at low energy scales.

→ No full QGR theory available to prove emergence.

Note in support:

In QFTs in vacuum the entanglement entropy decays with distance. (Non-locality is harder to see at long distances/low energy.)

This talk focuses on entanglement in QFT.

Entanglement entropy in QM and QFT

Ko Sanders 7/24

Entanglement in QM

Let ρ a density matrix on $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$ (i.e. $\rho \geq 0$, $\operatorname{tr}_{\mathcal{H}} \rho = 1$).

• ρ is a product state iff $\rho = \rho_A \otimes \rho_B$ iff for all $a \in \mathcal{B}(\mathcal{H}_A)$, $b \in \mathcal{B}(\mathcal{H}_B)$

$$\operatorname{tr}_{\mathcal{H}} \rho(\mathbf{a} \otimes \mathbf{b}) = \operatorname{tr}_{\mathcal{H}} \rho(\mathbf{a} \otimes \mathbf{I}) \cdot \operatorname{tr}_{\mathcal{H}} \rho(\mathbf{I} \otimes \mathbf{b})$$
.

- \rightarrow No measurement correlations between A and B.
- ρ is a separable state iff ρ is a mixture of product states,

$$\rho = \sum_{n} \lambda_{n} \, \rho_{A}^{(n)} \otimes \rho_{B}^{(n)}$$

with $\lambda_n \geq 0$, $\sum_n \lambda_n = 1$.

- \rightarrow Only classical measurement correlations between A and B.
- ρ is entangled iff it is not separable.

4 D > 4 P > 4 E > 4 E > E 990

Entanglement entropy

We want a kind of "distance" from a state to the set of separable states.

The entanglement entropy $S_{\rm EE}$ is defined in terms of the relative entropy:

$$S_{ ext{EE}}(
ho) = \inf_{
ho' ext{ separable}} S_{ ext{rel}}(
ho,
ho'),
onumber \ S_{ ext{rel}}(
ho,
ho') = ext{tr}
ho(\log
ho - \log
ho').$$

For the relative entropy we have:

- $S_{\text{rel}}(\rho, \rho') = \text{tr}\rho(\log \rho \log \rho') \ge 0$ with = 0 iff $\rho = \rho'$,
- $S_{\text{rel}}(\rho, \rho') \neq S_{\text{rel}}(\rho', \rho)$ in general,
- no triangle inequality in general.

 $S_{\rm rel}(
ho,
ho')$ is the expected amount of information gained when we learn that the state is ho and we previously thought it was ho'. (Baez-Fritz, 2014)

Important bad entanglement measures

• The von Neumann entropy: for $\rho_A = \operatorname{tr}_{\mathcal{H}_B} \rho$,

$$S_{\mathrm{vN}}(
ho_{\mathcal{A}}) = -\mathrm{tr}
ho_{\mathcal{A}}\log(
ho_{\mathcal{A}}) \geq 0.$$

• The violation of the Bell (CHSH) inequality:

$$\beta(\rho) = \frac{1}{2} \sup_{a_i,b_i} \operatorname{tr} \rho(a_1 \otimes (b_1 + b_2) + a_2 \otimes (b_1 - b_2)) \in [1,\sqrt{2}]$$

with
$$a_i^* = a_i$$
, $b_i^* = b_i$, $||a_i||$, $||b_i|| \le 1$.

(Summers-Werner, 1995)

For pure states $\rho = |\psi\rangle\langle\psi|$ with $\psi\in\mathcal{H}$:

$$\rho$$
 is entangled \Leftrightarrow $S_{vN}(\rho) > 0 \Leftrightarrow \beta(\rho) > 1$.

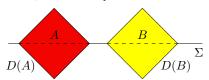
Problems with mixed states:

- $S_{vN}(\rho_A) > 0$ for separable mixed states (not specific enough),
- ② $\beta(\rho) = 1$ for some entangled states (not sensitive enough). (Gisin, 1996)

Ko Sanders 10/24

Entanglement in QFT

Let $A, B \subset \Sigma$ disjoint, bounded, open regions in a Cauchy surface.



D(A), D(B) domains of dependence A_A , A_B , $A_{A \cup B}$ associated algebras of observables.

- If $A \cap B = \emptyset$, then $[A_A, A_B] = \{0\}$ (Einstein causality)
- Typically we have a unitary $U: \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$ with (split property)

$$U(\mathcal{A}_{A\cup B})U^* = \mathcal{A}_A \otimes \mathcal{A}_B$$

if and only if $\overline{A} \cap \overline{B} = \emptyset$. (Doplicher-Longo, 1984)

- If $A \cup B \neq \Sigma$, any reasonable state restricted to $\mathcal{A}_{A \cup B}$ is mixed.
- $A_A \neq B(\mathcal{H})$, but S_{rel} and S_{EE} can still be defined using Tomita-Takesaki modular theory.

(ロ) (回) (巨) (巨) (巨) のQで

Results on entanglement entropy in QFT

Consider a static spacetime. For fixed A and varying r = dist(A, B),

$$S_{\rm EE}(\Omega) \lesssim C e^{-\frac{m}{2}r}, \qquad mr \gg 1$$

for the ground state Ω of massive (m > 0)

- free minimally coupled scalar fields,
- free Majorana fields,
- integrable QFTs on (1 + 1)-dimensional Minkowski space with a factorizing S-matrix (e.g. sinh-Gordon).

(Hollands-KS, 2018)

In other examples (including m = 0) the decay is at least polynomial.

Question: Are the separable states that yield these estimates physically reasonable? (Symmetric? Hadamard?)

◆□▶ ◆□▶ ◆ ■ ▶ ◆ ■ ・ の Q ○

Results on entanglement entropy in QFT

Consider a static spacetime. For fixed A and varying r = dist(A, B),

$$S_{\rm EE}(\Omega) \lesssim C e^{-\frac{m}{2}r}, \qquad mr \gg 1$$

for the ground state Ω of massive (m > 0)

- free minimally coupled scalar fields,
- free Majorana fields,
- integrable QFTs on (1 + 1)-dimensional Minkowski space with a factorizing S-matrix (e.g. sinh-Gordon).

(Hollands-KS, 2018)

In other examples (including m = 0) the decay is at least polynomial.

Question: Are the separable states that yield these estimates physically reasonable? (Symmetric? Hadamard?)

- ◆□ > ◆圖 > ◆注 > ◆注 > 注 り Q @

Separable states in relativistic QFT

Ko Sanders 13/24

Toy model: free scalar QFT

Let ϕ be a free scalar QFT in a globally hyperbolic spacetime M. A quasi-free Hadamard state ω is determined by its 2-point distribution

$$\omega_2(f,g) = \langle \Omega, \phi(f)\phi(g)\Omega \rangle_{\omega}$$

which satisfies for $K = -\Box + m^2 + \xi R$

$$\bullet$$
 $\omega_2(\bar{f}, f) \geq 0$ for all $f \in C_0^\infty(M)$

(positive type)

$$K_x\omega_2(x,y)=K_y\omega_2(x,y)=0$$
 weakly

(EOM)

$$\omega_2(x,y) - \omega_2(y,x) = iE(x,y)$$
 a fixed distribution

(CCR)

4
$$WF(\omega_2) \subset \mathcal{C}$$
 a fixed set

(Hadamard condition)

 ω is a product state between $D(A), D(B) \subset M$,

$$\omega(e^{i\phi(f)}e^{i\phi(g)}) = \omega(e^{i\phi(f)})\omega(e^{i\phi(g)}) \quad \forall f \in C_0^{\infty}(D(A)), g \in C_0^{\infty}(D(B))$$

iff ω_2 vanishes on $D(A) \times D(B)$ and (hence) $D(B) \times D(A)$.

10,10,12,12,12,12,12,12

Initial data formulation

Let Σ be a smooth spacelike Cauchy surface in M. To handle the EOM we will use initial data for ω_2 on Σ of the form

$$\left(\omega_{2,ij}\right)_{i,j=0,1} = \begin{pmatrix} \omega_{2,00}|_{\Sigma\times\Sigma} & \partial_{y^0}\omega_{2,00}|_{\Sigma\times\Sigma} \\ \partial_{x^0}\omega_{2,00}|_{\Sigma\times\Sigma} & \partial_{x^0}\partial_{y^0}\omega_{2,00}|_{\Sigma\times\Sigma} \end{pmatrix} \,.$$

Given any ω_2 , we find other Hadamard 2-point distributions as

$$\omega_2'(x,y) = \omega_2(x,y) + w_2(x,y)$$

with $w_2 \in C^{\infty}(M^2)$, s.t. $w_2(y, x) = w_2(x, y)$, $K_x w_2(x, y) = 0$ and

$$w_2(\overline{f}, f) \geq -\omega_2(\overline{f}, f) \quad \forall f \in C_0^\infty(M).$$

Clearly \geq 0 is sufficient.

(□) (□) (□) (□) (□) (□)

A simple construction

Given any ω_2 and bounded open regions $A, B \subset \Sigma$ with $\overline{A} \cap \overline{B} = \emptyset$, we want to remove the correlations between D(A) and D(B) in M.

Let $\chi_A, \chi_B \in C_0^\infty(\Sigma)$ such that

$$\chi_{A/B} \equiv 1 \text{ on } A/B \quad \operatorname{supp}(\chi_A) \cap \operatorname{supp}(\chi_B) = \emptyset.$$

Consider $v_2 \in C_0^\infty(\Sigma^2, \operatorname{Mat}(2,\mathbb{R}))$ defined by

$$(\mathbf{v}_{2,ij}(\mathbf{x},\mathbf{y})) := -\chi_{\mathbf{A}}(\mathbf{x})\chi_{\mathbf{B}}(\mathbf{y}) \cdot (\omega_{2,ij}(\mathbf{x},\mathbf{y})).$$

Warning: $w_{2,ij}(x,y) = v_{2,ij}(x,y) + v_{2,ji}(y,x)$ removes the correlations, but destroys positive type!

A simple construction

Given any ω_2 and bounded open regions $A, B \subset \Sigma$ with $\overline{A} \cap \overline{B} = \emptyset$, we want to remove the correlations between D(A) and D(B) in M.

Let $\chi_A, \chi_B \in C_0^\infty(\Sigma)$ such that

$$\chi_{A/B} \equiv 1 \text{ on } A/B \quad \operatorname{supp}(\chi_A) \cap \operatorname{supp}(\chi_B) = \emptyset.$$

Consider $v_2 \in C_0^\infty(\Sigma^2, \operatorname{Mat}(2,\mathbb{R}))$ defined by

$$(\mathbf{v}_{2,ij}(\mathbf{x},\mathbf{y})) := -\chi_{A}(\mathbf{x})\chi_{B}(\mathbf{y})\cdot(\omega_{2,ij}(\mathbf{x},\mathbf{y}))$$
.

Warning: $w_{2,ij}(x,y) = v_{2,ij}(x,y) + v_{2,ji}(y,x)$ removes the correlations, but destroys positive type!

Separable states

 v_2 is the integral kernel of a compact operator L on $L^2(\Sigma, \mathbb{C}^2)$. We can write L = U|L| with $|L| = \sqrt{L^*L}$ and U a partial isometry. Then

$$\tilde{L} := L + L^* + |L| + |L^*| \ge 0$$
.

Proposition

 $ilde{L}$ has a smooth integral kernel $ilde{v}_2 \in C_0^\infty(\Sigma^2, \operatorname{Mat}(2,\mathbb{R}))$, such that

- \tilde{v}_2 is of positive type
- $\tilde{v}_2 = -(\omega_{2,ij})$ on $A \times B$ and $B \times A$,

Taking $(w_{2,ij}) = \tilde{v}_2$ yields a Hadamard two-point distribution $\omega_2' = \omega_2 + w_2$ for a product state between D(A) and D(B).

 $S_{\rm rel}(\omega,\omega')$ is still under investigation.

Symmetric separable states

Ko Sanders 18/24

Symmetric separable states

Consider 3 + 1-dimensional Minkowski space and assume m > 0. We write $x = (x_0, \mathbf{x})$.

Theorem

Given any R > 0, there exist quasi-free Hadamard states ω which are stationary, homogeneous, isotropic and s.t.

$$\omega(T_{00}^{\text{ren}}(x)) \le 10^{31} m^4 \frac{e^{-\frac{1}{4}mR}}{(mR)^8}.$$

- (1) shows that ω is a product state between any regions spacelike separated by a distance > R.
- $\omega(T_{00}^{\text{ren}}(x))$ is constant and cannot be arbitrarily small.
- The upper bound in (2) is not sharp, but falls off fast as *R* grows.

Symmetric separable states

Consider 3 + 1-dimensional Minkowski space and assume m > 0. We write $x = (x_0, \mathbf{x})$.

Theorem

Given any R > 0, there exist quasi-free Hadamard states ω which are stationary, homogeneous, isotropic and s.t.

$$\omega(T_{00}^{\text{ren}}(x)) \le 10^{31} m^4 \frac{e^{-\frac{1}{4}mR}}{(mR)^8}.$$

- (1) shows that ω is a product state between any regions spacelike separated by a distance > R.
- $\omega(T_{00}^{\text{ren}}(x))$ is constant and cannot be arbitrarily small.
- The upper bound in (2) is not sharp, but falls off fast as R grows.

◆□ > ◆□ > ◆ 差 > ◆ 差 * り へ ○

Construction

We use the Minkowski vacuum $\omega^{(0)}$ as reference state,

$$\omega_2(x-x') = \omega_2^{(0)}(x-x') + w(x-x'),$$

where w is smooth, real, even with Kw = 0 and $\hat{w} \ge 0$.

At $x^0 = 0$ we have $\partial_0 w|_{x^0 = 0} \equiv 0$. We want $w_0(\mathbf{x}) = w(0, \mathbf{x})$ with

- ① $\widehat{w_0} \geq 0$ (positive type) By Bochner's Theorem w(x-x') is of positive type iff $\hat{w} \geq 0$.
- ② $w_0(\mathbf{x}) = -\omega_{2,00}^{(0)}(0,\mathbf{x})$ if $\|\mathbf{x}\| \ge 0$ (separability)

If $\chi \in \emph{C}_0^{\infty}((-\emph{R},\emph{R}),\mathbb{R})$ with $\chi \equiv 1$ near 0 we can try

$$w_0(\mathbf{x}) = (\chi(\|\mathbf{x}\|) - 1)\omega_{2,00}^{(0)}(0,\mathbf{x}).$$

This removes correlations, but destroys the positive type.

Test functions of positive type

Let l > 0 and $\epsilon : \mathbb{R}_{\geq 0} \to \mathbb{R}_{> 0}$ monotonically decreasing.

Theorem (Ingham, 1934)

There exists non-zero $f \in C_0^{\infty}((-l,l),\mathbb{R})$ such that $|\hat{f}(k)| \leq e^{-|k|\epsilon(|k|)}$ for all $k \in \mathbb{R}$ iff $\int_1^{\infty} \frac{\epsilon(k)}{k} dk < \infty$.

To omplete our construction, we want to control lower bounds on \hat{t} .

Theorem (KS, 2023)

Let also $\gamma \in (0,1)$. If $\int_1^\infty \frac{\epsilon(k)}{k} \mathrm{d}k < \infty$ and $\lim \inf_{k \to \infty} k^\gamma \epsilon(k) > 0$, there exists $g \in C_0^\infty((-l,l),\mathbb{R}_{>0})$ such that $\int g = 1$ and $\hat{g}(k) \geq e^{-|k|\epsilon(|k|)}$.

- The proof constructs *g* with repeated convolutions.
- This theorem is in one direction only and may not be sharp.

4 D > 4 B > 4 B > B 9 9 9 9

Ko Sanders 21/24

Comments on the proof:

A standard construction of test-functions in $C_0^{\infty}([0,a],\mathbb{R})$ takes

$$f(x) = \lim_{n \to \infty} \frac{1}{a_1} \mathbf{1}_{[0,a_1]} * \frac{1}{a_2} \mathbf{1}_{[0,a_2]} * \dots * \frac{1}{a_n} \mathbf{1}_{[0,a_n]}$$

where $a_1 \geq a_2 \geq \ldots > 0$ with $\sum_{n=1}^{\infty} a_n < \infty$. We replace $\frac{1}{a_n} \mathbf{1}_{[0,a_n]}$ by

$$\eta_{a_n}(x) = \frac{3}{2} \frac{1}{a_n} \left(\mathbf{1}_{\left[-\frac{1}{2}, \frac{1}{2}\right]} * \mathbf{1}_{\left[-\frac{1}{2}, \frac{1}{2}\right]} \right)^2 \left(\frac{x}{a_n} \right) \, .$$

We can then construct $g\in C_0^\infty([-a,a],\mathbb{R})$ of positive type and

- estimate supp(g), $||g^{(k)}||_1$ and $||g^{(k)}||_{\infty}$ in terms of the a_n ,
- find suitable a_n to prove the theorem.

Notes:

- Any Gevrey class function can be dominated by a test-function of positive type with arbitrarily small support near 0.
- The only prior result I know of controlling lower bounds is asymptotic. (Fewster-Ford, 2015)

Comments on the proof:

A standard construction of test-functions in $C_0^{\infty}([0, a], \mathbb{R})$ takes

$$f(x) = \lim_{n \to \infty} \frac{1}{a_1} \mathbf{1}_{[0,a_1]} * \frac{1}{a_2} \mathbf{1}_{[0,a_2]} * \dots * \frac{1}{a_n} \mathbf{1}_{[0,a_n]}$$

where $a_1 \geq a_2 \geq \ldots > 0$ with $\sum_{n=1}^{\infty} a_n < \infty$. We replace $\frac{1}{a_n} \mathbf{1}_{[0,a_n]}$ by

$$\eta_{a_n}(x) = \frac{3}{2} \frac{1}{a_n} \left(\mathbf{1}_{\left[-\frac{1}{2}, \frac{1}{2}\right]} * \mathbf{1}_{\left[-\frac{1}{2}, \frac{1}{2}\right]} \right)^2 \left(\frac{x}{a_n} \right) \, .$$

We can then construct $g \in C_0^{\infty}([-a, a], \mathbb{R})$ of positive type and

- estimate supp(g), $||g^{(k)}||_1$ and $||g^{(k)}||_\infty$ in terms of the a_n ,
- find suitable a_n to prove the theorem.

Notes:

- Any Gevrey class function can be dominated by a test-function of positive type with arbitrarily small support near 0.
- 2 The only prior result I know of controlling lower bounds is asymptotic. (Fewster-Ford, 2015)

Ko Sanders 22/24

Conclusions and outlook

Ko Sanders 23/24

Conclusions and open questions

- Entanglement shows that nature is non-local (in some sense).
- We use QFTs to investigate entanglement ↔ localisation.
- Nice separable states exist for free scalar QFTs:
 - as small perturbations of a given quasi-free state,
 - as translation invariant states in Minkowski space, separable over distances > R at a fixed time.
- Energy bounds suggest: separability is easier/cheaper to maintain at large R.
 - → Can we get sharper bounds on the energy (density)?
- Entanglement entropy in vacuum falls off with distance.
 - → Can we get the same decay using nice separable states?

4□ > 4□ > 4 = > 4 = > = 90