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Motivations

✺ Non asymptotically free renormalizable QFTs: Quantum
electrodynamics (QED), φ4

4 theory (Higgs field with two
components).

✺ Perturbation theory:
➔ Landau pole : divergence of the running coupling

constant g(λ) at a certain energy.
➔ If λmax −→ +∞ and g(λmax) fixed: finite result only

if gren = g(λphys) −→
λmax→+∞

0 : Theory = trivial .

✺ Triviality of the φ4
d theory in d dimensions:

➔ d > 4: Triviality of the continuum limit on a lattice,
by Aizenman and Fröhlich in [1, 2] only if N = 1,2
[1982].

➔ d = 4: Multi-scale analysis by Aizenman and
Duminil-Copin in [3] [2021].
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Motivations

✺ Triviality of the full Standard model : unsolved question
(other sectors).

✺ Discussions about the consequences of the triviality :
upper bounds on the Higgs mass before its discovery in
2012.

✺ Our method is based on the flow equations [4] : analysis
of the O(N)-model, N ≥ 1.
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scalar theory in four dimensions
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The O(N)-model

✺ Model introduced by Stanley to generalize the Ising
(N = 1), X-Y (N = 2) and Heisenberg model (N = 3) [5].

✺ The large N-limit studied by Moshe and Zinn-Justin in
[6]: expansion in 1

N .
✺ Limit N −→ +∞: spherical model [7].
✺ Scalar field with N real components:

φ(x) = [φ1(x), · · · , φN(x)]T .

✺ Consider a theory with a global O(N)-symmetry,
invariant under φ 7→ −φ: only even moments are
non-vanishing.
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The flow equations for the O(N)-model in the mean field approximation

Context

✺ Our method is based on the flow equations in the mean field
approximation.

✺ Euclidean space R4, scalar product ⟨·, ·⟩ in L2(R4,d4x).
✺ Convention for the Fourier transform:∫

p
:=

∫ d4p
(2π)4 , f̂ (p) =

∫
p

eipxf (x) . (1)

✺ Regularized propagator in momentum space:

Cα0,α
ij (p,m) = δij

1
p2 + m2

(
exp(−α0(p2 + m2))− exp(−α(p2 + m2))

)
,

(2)
with m the mass, α0: UV-cutoff, α ∈ [α0,+∞): flow parameter
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The flow equations for the O(N)-model in the mean field approximation

Bare interaction lagrangian

✺ Bare interaction lagrangian for a theory with a global
O(N)-symmetry:

LN
0,V(φ) =

∫
V

d4x
[ ∑

n∈2N
c0,n(α0)φ

n(x)
]
. (3)

with φ2(x) :=
∑

1≤i≤N φ2
i (x) and φn(x) = (φ2(x)) n

2 for n ∈ 2N.
✺ c0,n(α0) : bare couplings → relevant/marginal for n = 2,4,

irrelevant for n ≥ 6. No wavefunction renormalization term
because of the mean-field limit.

✺ V: finite volume in R4.
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The flow equations for the O(N)-model in the mean field approximation

Correlation functions

✺ Correlation functions in the finite volume V

⟨φi1(x1) · · ·φin(xn)⟩α0,α
N,V :=

1
Zα0,α

N,V

∫
dµα0,α

N,V (φ)e−LN
0,V (φ)φi1(x1) · · ·φin(xn) ,

(4)
with

• Zα0,α
N,V : normalization factor

• µ
α0,α
N,V : the Gaussian measure associated with the regularized

propagator (2) (details in [8]).
✺ Generating functional of the Connected Amputated Schwinger (CAS)

functions Lα0,α
N,V (φ)

−Lα0,α
N,V (φ) := log

(∫
dµα0,α

N,V (ψ) exp(−LN
0,V(φ+ψ)

)
− log(Zα0,α

N,V ) . (5)
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The flow equations for the O(N)-model in the mean field approximation

Moments of the generating functional of the
CAS functions

-
The infinite volume limit exists once we pass to the
CAS functions → we remove the index V.

✺ Expansion in a power series of φ̂i of the generating functional of the
CAS function

Lα0,α
N (φ) =

∑
n∈2N

∑
1≤i1,··· ,in≤N

∫
p1,p2,··· ,pn

L̄α0,α
n;i1i2···in(p1, · · · ,pn)φ̂i1(p1) · · · φ̂in(pn).

(6)
✺ Factorization due to translation invariance in position space

L̄α0,α
n;i1i2···in(p1, · · · ,pn) = δ4

( n∑
i=1

pi

)
︸ ︷︷ ︸
distributional

Lα0,α
n;i1i2···in(p1, · · · ,pn)︸ ︷︷ ︸

smooth

. (7)
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The flow equations for the O(N)-model in the mean field approximation

Mean-field approximation (m.f.a.)

✺ Mean field approximation: set all momenta to zero.
✺ Further technical simplification : set m = 0 and restrict

the study to α ∈ [α0,1] (units such that m2 = 1, artificial
IR cutoff).

✺ Define Aα0,α
n;i1i2···in := Lα0,α

n;i1i2···in(0, · · · ,0).

12 / 29
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n;i1i2···in := Lα0,α

n;i1i2···in(0, · · · ,0).
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The flow equations for the O(N)-model in the mean field approximation

Flow equations in the m.f.a.

✺ Flow equations in the m.f.a.

∂αAα0,α
n;i1i2···in =

(
n + 2

2

)
c
α2

N∑
j=1

Aα0,α
n+2,i1i2···injj

− 1
2

∑
n1+n2=n+2

n1n2

N∑
j=1

S
[
Aα0,α

n1;i1i2···in1−1jA
α0,α
n2;in1 in1+1···inj

]
;

(8)

with c := 1
16π2 , S is an average operator permuting colour indices.

✺ First difficulty: no inductive scheme so far : use the symmetry of
the theory to analyze the dependence in the vector indices.
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The flow equations for the O(N)-model in the mean field approximation

Properties of the mean-field CAS functions

Properties of the mean-field CAS functions

(P1): Aα0,α
n;i1i2···in

= 0 if n is odd (Z2-symmetry).

(P2): Aα0,α
n;i1i2···in

is symmetric under any permutation of its indices
i1, i2, · · · , in (Bose symmetry).
(P3): Aα0,α

n;i1i2···in
must be O(N)-invariant in the following sense:

Let O be an orthogonal matrix i.e. OTO = OTO = I, then

Oi1 j1 Oi2 j2 · · ·Oin jn Aα0,α
n;j1 j2···jn = Aα0,α

n;i1i2···in
. (9)
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The flow equations for the O(N)-model in the mean field approximation

Simplification of the flow equations in the
m.f.a.

✺ Properties (P1)-(P2) and (P3) imply

Aα0,α
n;i1i2···in = Aα0,α

n Fi1i2···in , (10)

with Aα0,α
n smooth and

Fi1i2···in := δ(i1i2δi3i4 · · · δin−1in) =
1
n!
∑
σ∈Sn

δiσ(1)iσ(2) · · · δiσ(n−1)iσ(n) . (11)

✺ Then we obtain

∂αAα0,α
n =

(
n + 2

2

)
N + n
n + 1

c
α2 Aα0,α

n+2 − 1
2

∑
n1+n2=n+2

n1n2Aα0,α
n1 Aα0,α

n2 .

(12)

Remark: N = 1 gives the single component case treated by Kopper
in [4].
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The flow equations for the O(N)-model in the mean field approximation

Simplification of the FEs in the m.f.a.

✺ Factor out the power counting and the combinatorial factor

fn(µ) := nα2− n
2 c

n
2 −1Aα0,α

n , µ := ln

(
α

α0

)
. (13)

The variable µ lives in the compact [0, µmax] with µmax := ln
(

1
α0

)
.

Flow equations in the m.f.a. (inductive form)

fn+2(µ) =
2

n(n + N)
∂µfn(µ) +

n − 4
n(n + N)

fn(µ)

+
1

n + N
∑

n1+n2=n+2
fn1(µ)fn2(µ) .

(14)
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The trivial solution of the O(N)-model

Construction of a trivial solution

✺ Start with this bare interaction lagrangian

LN
0 (φ) =

∫
d4x
(

c0,2φ
2(x) + c0,4︸︷︷︸

≥0

φ4(x)
)
. (15)

✺ Boundary conditions in the m.f.a. at the bare level (µ = 0):

f2(0) = 2(2π)4α0c0,2, f4(0) = 4π2c0,4, fn(0) = 0, n ≥ 6 . (16)

✺ IDEA: Construct the two-point function f2(µ) such that
• The solutions fn(µ) constructed inductively from (14) are

smooth and satisfy the boundary conditions (16).
• The quantities fn(µmax) vanish when µmax → +∞ i.e. α0 → 0:

Triviality of the mean-field theory !
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The trivial solution of the O(N)-model

Construction of a trivial solution

✺ Crucial ingredient: ansatz of f2(µ) introduced by Kopper [4] of the
form ∑

n≥1
bn

xn−1
n

1 + xn
n
, xn := nµ , (17)

with (bn)n≥1 a sequence of real numbers so that the boundary
conditions (16) are satisfied.

✺ Aim : Prove that f2(µ) is well defined for µ ∈ [0, µmax].

Proposition. Geometric bounds for the coefficients bn

There exists a constant C(N, c0,2, c0,4) > 0 such that

|bn| ≤ C(N, c0,2, c0,4)
n2

2n , n ≥ 1 . (18)

Proof is done by induction using (14) and is delicate (see [9]).
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The trivial solution of the O(N)-model

Existence of a trivial solution

✺ From (18) the solutions fn(µ) are well-defined for µ ∈ [0, µmax].
✺ The solutions fn(µ) vanish in the UV-limit in the following sense:

lim
µmax→+∞

∂l
µfn(µmax) = 0, l ≥ 0, n ≥ 2 . (19)

Proof is done by induction using (14) and the ansatz.

Theorem. Existence of a trivial mean-field solution
Consider a bare interaction lagrangian (15) and the corresponding
mean-field boundary conditions (16) with c0,2 and c0,4 arbitrary con-
stants. Then there exist smooth solutions of (14) which satisfy the
boundary conditions (16) and vanish in the UV-limit.
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The trivial solution of the O(N)-model

Uniqueness of the trivial solution

✺ Non-trivial point: the solutions fn(µ) are not analytic at µ = 0 !
Linked to the infinite set of constraints fn(0) = 0, n ≥ 6.

✺ For simplicity, take N = 1. Consider the mean field effective action

L0,µ
mf (x) =

∑
n∈2N

A0,µ
n xn . (20)

Proposition. Local analyticity of the mean-field effective action

Consider the solutions fn(µ) constructed from the ansatz (17) for the
fixed boundary conditions (16). Then L0,0

mf (x) is polynomial w.r.t. x
and for µ > 0, the function L0,µ

mf (x) is locally analytic w.r.t. x.

Idea of the proof: find bounds on the derivatives of f2(µ), then use the FEs
(14) to deduce inductive bounds on fn(µ).
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The trivial solution of the O(N)-model

Uniqueness of the trivial solution

✺ Idea: find an integral formulation of the mean-field FEs (14).
✺ Inspired by Felder’s idea : continuum limit of the hierarchical model

[10] → Effective action u at scale L−1λ, with L > 1, related to the
effective action at scale λ by

e−u(L−1λ,x) =

∫
dµL(y)e−L4u(λ,L−1x+y) , λ ∈ (0,Λ0] , (21)

where µL is the one-dimensional Gaussian measure defined by

dµL(y) :=
1√

2π(L − 1)
e−

y2
2(L−1) dy . (22)

21 / 29



Outline Motivations Triviality of the mean-field O(N)-model scalar theory in four dimensions Perspectives

The trivial solution of the O(N)-model

Uniqueness of the trivial solution

✺ Idea: find an integral formulation of the mean-field FEs (14).

✺ Inspired by Felder’s idea : continuum limit of the hierarchical model
[10] → Effective action u at scale L−1λ, with L > 1, related to the
effective action at scale λ by

e−u(L−1λ,x) =

∫
dµL(y)e−L4u(λ,L−1x+y) , λ ∈ (0,Λ0] , (21)

where µL is the one-dimensional Gaussian measure defined by

dµL(y) :=
1√

2π(L − 1)
e−

y2
2(L−1) dy . (22)

21 / 29



Outline Motivations Triviality of the mean-field O(N)-model scalar theory in four dimensions Perspectives

The trivial solution of the O(N)-model

Uniqueness of the trivial solution

✺ Idea: find an integral formulation of the mean-field FEs (14).
✺ Inspired by Felder’s idea : continuum limit of the hierarchical model

[10] → Effective action u at scale L−1λ, with L > 1, related to the
effective action at scale λ by

e−u(L−1λ,x) =

∫
dµL(y)e−L4u(λ,L−1x+y) , λ ∈ (0,Λ0] , (21)

where µL is the one-dimensional Gaussian measure defined by

dµL(y) :=
1√

2π(L − 1)
e−

y2
2(L−1) dy . (22)

21 / 29



Outline Motivations Triviality of the mean-field O(N)-model scalar theory in four dimensions Perspectives

The trivial solution of the O(N)-model

Uniqueness of the trivial solution

✺ Take the L-derivative of (21) and evaluate at L = 1:

− λ∂λu =
1
2∂xxu − 1

2 (∂xu)2 + 4u − x∂xu . (23)

✺ Expansion of u(λ, x) as a power series in x

u(λ, x) =
∑
n∈2N

(2) n
2 fn(λ)

n xn , (24)

and setting λ = Λ0e−
µ
2 , we obtain (14): Integral formulation of the

mean-field FEs → Uniqueness of the solution u and its moments
f (λ) if u has a non-zero radius of convergence around x.
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f (λ) if u has a non-zero radius of convergence around x.
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The trivial solution of the O(N)-model

Uniqueness of the trivial solution

Theorem. Uniqueness of the trivial solution

For fixed mean-field boundary conditions (16), let fn(µ) be the mean-
field solutions of (14) constructed from the ansatz (17). Let f̃n(µ) be
solutions of the mean-field FE (14) which satisfy fn(0) = f̃n(0). We
assume that the corresponding mean-field effective action ũ(λ, x) is
locally analytic w.r.t. x for λ < Λ0. Then fn(µ) = f̃n(µ).

Extension to N > 1 can be done analogously (see [9] for more details).
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Perspectives
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Future plans

✺ Establish a relationship between perturbation theory
and our non-perturbative approach. In preparation.

✺ Beyond the mean-field approximation ? Difficult to
tackle this problem due to the momenta dependence.

✺ Can we study fermionic fields, gauge fields ?
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Thank you for yourattention
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