

Triviality of mean-field φ^4 theories in four dimensions

Pierre WANG

Joint work with Christoph KOPPER
Poznań Spring School, Adam Mickiewicz University

April 9, 2025

Outline

Motivations

Triviality of the mean-field O(N)-model scalar theory in four dimensions

The flow equations for the $\mathcal{O}(N)$ -model in the mean field approximation

The trivial solution of the O(N)-model

Perspectives

** Non asymptotically free renormalizable QFTs: Quantum electrodynamics (QED), φ_4^4 theory (Higgs field with two components).

- ** Non asymptotically free renormalizable QFTs: Quantum electrodynamics (QED), φ_4^4 theory (Higgs field with two components).
- ***** Perturbation theory:
 - → Landau pole : divergence of the running coupling constant $g(\lambda)$ at a certain energy.
 - → If $\lambda_{\max} \longrightarrow +\infty$ and $g(\lambda_{\max})$ fixed: finite result only if $g_{ren} = g(\lambda_{phys}) \underset{\lambda_{\max} \to +\infty}{\longrightarrow} 0$: **Theory = trivial**.

- ** Non asymptotically free renormalizable QFTs: Quantum electrodynamics (QED), φ_4^4 theory (Higgs field with two components).
- ****** Perturbation theory:
 - → Landau pole : divergence of the running coupling constant $g(\lambda)$ at a certain energy.
 - → If $\lambda_{\max} \longrightarrow +\infty$ and $g(\lambda_{\max})$ fixed: finite result only if $g_{ren} = g(\lambda_{phys}) \underset{\lambda_{\max} \to +\infty}{\longrightarrow} 0$: **Theory = trivial**.
- * Triviality of the φ_d^4 theory in d dimensions:
 - → d > 4: Triviality of the continuum limit on a lattice, by Aizenman and Fröhlich in [1, 2] only if N = 1, 2 [1982].
 - → d=4: Multi-scale analysis by Aizenman and Duminil-Copin in [3] [2021].

** Triviality of the full Standard model: unsolved question (other sectors).

- ** Triviality of the full Standard model: unsolved question (other sectors).
- ** Discussions about the consequences of the triviality : upper bounds on the Higgs mass before its discovery in 2012.

- ** Triviality of the full Standard model: unsolved question (other sectors).
- ** Discussions about the consequences of the triviality: upper bounds on the Higgs mass before its discovery in 2012.
- ** Our method is based on the flow equations [4]: analysis of the O(N)-model, $N \ge 1$.

Triviality of the mean-field O(N)-model scalar theory in four dimensions

** Model introduced by Stanley to generalize the Ising (N = 1), X-Y (N = 2) and Heisenberg model (N = 3) [5].

- ** Model introduced by Stanley to generalize the Ising (N = 1), X-Y (N = 2) and Heisenberg model (N = 3) [5].
- ** The large N-limit studied by Moshe and Zinn-Justin in [6]: expansion in $\frac{1}{N}$.

- ** Model introduced by Stanley to generalize the Ising (N = 1), X-Y (N = 2) and Heisenberg model (N = 3) [5].
- ** The large N-limit studied by Moshe and Zinn-Justin in [6]: expansion in $\frac{1}{N}$.
- * Limit $N \longrightarrow +\infty$: spherical model [7].

- ** Model introduced by Stanley to generalize the Ising (N = 1), X-Y (N = 2) and Heisenberg model (N = 3) [5].
- ** The large N-limit studied by Moshe and Zinn-Justin in [6]: expansion in $\frac{1}{N}$.
- * Limit $N \longrightarrow +\infty$: spherical model [7].
- ** Scalar field with N real components:

$$\varphi(x) = [\varphi_1(x), \cdots, \varphi_N(x)]^T$$
.

- ** Model introduced by Stanley to generalize the Ising (N = 1), X-Y (N = 2) and Heisenberg model (N = 3) [5].
- ** The large N-limit studied by Moshe and Zinn-Justin in [6]: expansion in $\frac{1}{N}$.
- * Limit $N \longrightarrow +\infty$: spherical model [7].
- ** Scalar field with N real components:

$$\varphi(x) = [\varphi_1(x), \cdots, \varphi_N(x)]^T$$
.

** Consider a theory with a global O(N)-symmetry, invariant under $\varphi \mapsto -\varphi$: only even moments are non-vanishing.

Context

Context

* Our method is based on the flow equations in the mean field approximation.

Context

- * Our method is based on the flow equations in the mean field approximation.
- * Euclidean space \mathbb{R}^4 , scalar product $\langle \cdot, \cdot \rangle$ in $L^2(\mathbb{R}^4, d^4x)$.

Context

- * Our method is based on the flow equations in the mean field approximation.
- ***** Euclidean space \mathbb{R}^4 , scalar product $\langle \cdot, \cdot \rangle$ in $L^2(\mathbb{R}^4, d^4x)$.
- ***** Convention for the Fourier transform:

$$\int_{p} := \int \frac{d^{4}p}{(2\pi)^{4}}, \quad \hat{f}(p) = \int_{p} e^{ipx} f(x) . \tag{1}$$

Context

- * Our method is based on the flow equations in the mean field approximation.
- ***** Euclidean space \mathbb{R}^4 , scalar product $\langle \cdot, \cdot \rangle$ in $L^2(\mathbb{R}^4, d^4x)$.
- ***** Convention for the Fourier transform:

$$\int_{p} := \int \frac{d^{4}p}{(2\pi)^{4}}, \quad \hat{f}(p) = \int_{p} e^{ipx} f(x) . \tag{1}$$

* Regularized propagator in momentum space:

$$C_{ij}^{\alpha_0,\alpha}(p,m) = \delta_{ij} \frac{1}{p^2 + m^2} \left(\exp(-\alpha_0(p^2 + m^2)) - \exp(-\alpha(p^2 + m^2)) \right),$$
(2)

with *m* the mass, α_0 : UV-cutoff, $\alpha \in [\alpha_0, +\infty)$: flow parameter

Bare interaction lagrangian

Bare interaction lagrangian

** Bare interaction lagrangian for a theory with a global O(N)-symmetry:

$$L_{0,\mathcal{V}}^{N}(\varphi) = \int_{\mathcal{V}} d^{4}x \Big[\sum_{n \in 2\mathbb{N}} c_{0,n}(\alpha_{0}) \varphi^{n}(x) \Big] . \tag{3}$$

with
$$\varphi^2(x) := \sum_{1 \le i \le N} \varphi_i^2(x)$$
 and $\varphi^n(x) = (\varphi^2(x))^{\frac{n}{2}}$ for $n \in 2\mathbb{N}$.

Bare interaction lagrangian

** Bare interaction lagrangian for a theory with a global O(N)-symmetry:

$$L_{0,\mathcal{V}}^{N}(\varphi) = \int_{\mathcal{V}} d^{4}x \Big[\sum_{n \in 2\mathbb{N}} c_{0,n}(\alpha_{0}) \varphi^{n}(x) \Big] . \tag{3}$$

with
$$\varphi^2(x) := \sum_{1 \le i \le N} \varphi_i^2(x)$$
 and $\varphi^n(x) = (\varphi^2(x))^{\frac{n}{2}}$ for $n \in 2\mathbb{N}$.

** $c_{0,n}(\alpha_0)$: bare couplings \rightarrow relevant/marginal for n=2,4, irrelevant for $n\geq 6$. No wavefunction renormalization term because of the mean-field limit.

Bare interaction lagrangian

** Bare interaction lagrangian for a theory with a global O(N)-symmetry:

$$L_{0,\mathcal{V}}^{N}(\varphi) = \int_{\mathcal{V}} d^{4}x \Big[\sum_{n \in 2\mathbb{N}} c_{0,n}(\alpha_{0}) \varphi^{n}(x) \Big] . \tag{3}$$

with
$$\varphi^2(x) := \sum_{1 \le i \le N} \varphi_i^2(x)$$
 and $\varphi^n(x) = (\varphi^2(x))^{\frac{n}{2}}$ for $n \in 2\mathbb{N}$.

- ** $c_{0,n}(\alpha_0)$: bare couplings \rightarrow relevant/marginal for n=2,4, irrelevant for $n\geq 6$. No wavefunction renormalization term because of the mean-field limit.
- * \mathcal{V} : finite volume in \mathbb{R}^4 .

Correlation functions

Correlation functions

* Correlation functions in the finite volume \mathcal{V}

$$\langle \varphi_{i_1}(x_1)\cdots\varphi_{i_n}(x_n)\rangle_{N,\boldsymbol{\nu}}^{\alpha_0,\alpha}:=\frac{1}{Z_{N,\boldsymbol{\nu}}^{\alpha_0,\alpha}}\int d\mu_{N,\boldsymbol{\nu}}^{\alpha_0,\alpha}(\varphi)e^{-L_{0,\boldsymbol{\nu}}^N(\varphi)}\varphi_{i_1}(x_1)\cdots\varphi_{i_n}(x_n)\;,$$
(4)

with

- $Z_{N.v}^{\alpha_0,\alpha}$: normalization factor
- $\mu_{N,\mathcal{V}}^{\alpha_0,\alpha}$: the Gaussian measure associated with the regularized propagator (2) (details in [8]).

Correlation functions

Correlation functions in the finite volume \mathcal{V}

$$\langle \varphi_{i_1}(x_1) \cdots \varphi_{i_n}(x_n) \rangle_{N, \mathbf{v}}^{\alpha_0, \alpha} := \frac{1}{Z_{N, \mathbf{v}}^{\alpha_0, \alpha}} \int d\mu_{N, \mathbf{v}}^{\alpha_0, \alpha}(\varphi) e^{-L_{0, \mathbf{v}}^{N}(\varphi)} \varphi_{i_1}(x_1) \cdots \varphi_{i_n}(x_n) ,$$

$$(4)$$

with

- $Z_{NV}^{\alpha_0,\alpha}$: normalization factor
- $\mu_{N,N}^{\alpha_0,\alpha}$: the Gaussian measure associated with the regularized propagator (2) (details in [8]).
- Generating functional of the Connected Amputated Schwinger (CAS) functions $L_{N}^{\alpha_0,\alpha}(\varphi)$

$$-L_{N,\mathcal{V}}^{\alpha_0,\alpha}(\varphi) := \log\left(\int d\mu_{N,\mathcal{V}}^{\alpha_0,\alpha}(\psi) \exp(-L_{0,\mathcal{V}}^N(\varphi + \psi)\right) - \log(Z_{N,\mathcal{V}}^{\alpha_0,\alpha}) \ . \tag{5}$$

Moments of the generating functional of the **CAS** functions

Moments of the generating functional of the CAS functions

The infinite volume limit exists once we pass to the CAS functions \rightarrow we remove the index \mathcal{V} .

Moments of the generating functional of the CAS functions

- The infinite volume limit exists once we pass to the CAS functions \rightarrow we remove the index \mathcal{V} .
 - ** Expansion in a power series of $\hat{\varphi}_i$ of the generating functional of the CAS function

$$L_N^{\alpha_0,\alpha}(\varphi) = \sum_{n \in 2\mathbb{N}} \sum_{1 \le i_1, \dots, i_n \le N} \int_{p_1, p_2, \dots, p_n} \bar{\mathcal{L}}_{n; i_1 i_2 \dots i_n}^{\alpha_0, \alpha}(p_1, \dots, p_n) \hat{\varphi}_{i_1}(p_1) \dots \hat{\varphi}_{i_n}(p_n).$$

$$\tag{6}$$

Moments of the generating functional of the CAS functions

****** Expansion in a power series of $\hat{\varphi}_i$ of the generating functional of the CAS function

$$L_N^{\alpha_0,\alpha}(\varphi) = \sum_{n \in 2\mathbb{N}} \sum_{1 \leq i_1, \dots, i_n \leq N} \int_{p_1, p_2, \dots, p_n} \bar{\mathcal{L}}_{n; i_1 i_2 \dots i_n}^{\alpha_0, \alpha}(p_1, \dots, p_n) \hat{\varphi}_{i_1}(p_1) \dots \hat{\varphi}_{i_n}(p_n).$$

$$\tag{6}$$

* Factorization due to translation invariance in position space

$$\bar{\mathcal{L}}_{n;i_{1}i_{2}\cdots i_{n}}^{\alpha_{0},\alpha}(p_{1},\cdots,p_{n}) = \underbrace{\delta^{4}\left(\sum_{i=1}^{n}p_{i}\right)}_{\text{distributional}} \underbrace{\mathcal{L}_{n;i_{1}i_{2}\cdots i_{n}}^{\alpha_{0},\alpha}(p_{1},\cdots,p_{n})}_{\text{smooth}}.$$
 (7)

Mean-field approximation (m.f.a.)

Mean-field approximation (m.f.a.)

* Mean field approximation: set all momenta to zero.

Mean-field approximation (m.f.a.)

- * Mean field approximation: set all momenta to zero.
- ** Further **technical** simplification : set m = 0 and restrict the study to $\alpha \in [\alpha_0, 1]$ (units such that $m^2 = 1$, artificial IR cutoff).

Mean-field approximation (m.f.a.)

- * Mean field approximation: set all momenta to zero.
- ** Further **technical** simplification : $set \ m=0 \ and \ restrict$ the $study \ to \ \alpha \in [\alpha_0, 1]$ (units such that $m^2=1$, artificial IR cutoff).
- llowtharpoons Define $A_{n;i_1i_2\cdots i_n}^{lpha_0,lpha}:=\mathcal{L}_{n;i_1i_2\cdots i_n}^{lpha_0,lpha}(0,\cdots,0)$.

Flow equations in the m.f.a.

Flow equations in the m.f.a.

Flow equations in the m.f.a.

$$\partial_{\alpha} A_{n;i_{1}i_{2}\cdots i_{n}}^{\alpha_{0},\alpha} = \binom{n+2}{2} \frac{c}{\alpha^{2}} \sum_{j=1}^{N} A_{n+2,i_{1}i_{2}\cdots i_{n}jj}^{\alpha_{0},\alpha}$$

$$- \frac{1}{2} \sum_{n_{1}+n_{2}=n+2} n_{1}n_{2} \sum_{j=1}^{N} \mathbb{S} \left[A_{n_{1};i_{1}i_{2}\cdots i_{n_{1}-1}j}^{\alpha_{0},\alpha} A_{n_{2};i_{n_{1}}i_{n_{1}+1}\cdots i_{n}j}^{\alpha_{0},\alpha} \right];$$

$$(8)$$

with $c := \frac{1}{16\pi^2}$, \mathbb{S} is an average operator permuting colour indices.

Flow equations in the m.f.a.

Flow equations in the m.f.a.

$$\partial_{\alpha} A_{n;i_{1}i_{2}\cdots i_{n}}^{\alpha_{0},\alpha} = \binom{n+2}{2} \frac{c}{\alpha^{2}} \sum_{j=1}^{N} A_{n+2,i_{1}i_{2}\cdots i_{n}jj}^{\alpha_{0},\alpha}$$

$$- \frac{1}{2} \sum_{n_{1}+n_{2}=n+2} n_{1}n_{2} \sum_{j=1}^{N} \mathbb{S} \left[A_{n_{1};i_{1}i_{2}\cdots i_{n_{1}-1}j}^{\alpha_{0},\alpha} A_{n_{2};i_{n_{1}}i_{n_{1}+1}\cdots i_{n}j}^{\alpha_{0},\alpha} \right];$$

$$(8)$$

with $c := \frac{1}{16\pi^2}$, \mathbb{S} is an average operator permuting colour indices.

First difficulty: **no inductive scheme** so far : use the symmetry of the theory to analyze the dependence in the vector indices.

Properties of the mean-field CAS functions

Properties of the mean-field CAS functions

(P1): $A_{n:i,i_2...i}^{\alpha_0,\alpha} = 0$ if n is odd (\mathbb{Z}_2 -symmetry).

(**P2**): $A_{n:i_1i_2\cdots i_n}^{\alpha_0,\alpha}$ is symmetric under any permutation of its indices i_1, i_2, \cdots, i_n (Bose symmetry).

(P3): $A_{n;i_1i_2\cdots i_n}^{\alpha_0,\alpha}$ must be O(N)-invariant in the following sense:

Let O be an orthogonal matrix i.e. $O^TO = O^TO = I$, then

$$O_{i_1 j_1} O_{i_2 j_2} \cdots O_{i_n j_n} A_{n; j_1 j_2 \cdots j_n}^{\alpha_0, \alpha} = A_{n; i_1 i_2 \cdots i_n}^{\alpha_0, \alpha} . \tag{9}$$

Simplification of the flow equations in the m.f.a.

Simplification of the flow equations in the m.f.a.

* Properties (P1)-(P2) and (P3) imply

$$A_{n;i_1i_2\cdots i_n}^{\alpha_0,\alpha} = A_n^{\alpha_0,\alpha} F_{i_1i_2\cdots i_n} , \qquad (10)$$

with $A_n^{\alpha_0,\alpha}$ smooth and

$$F_{i_1 i_2 \cdots i_n} := \delta_{(i_1 i_2} \delta_{i_3 i_4} \cdots \delta_{i_{n-1} i_n)} = \frac{1}{n!} \sum_{\sigma \in S_n} \delta_{i_{\sigma(1)} i_{\sigma(2)}} \cdots \delta_{i_{\sigma(n-1)} i_{\sigma(n)}} . \tag{11}$$

Simplification of the flow equations in the m.f.a.

Properties (P1)-(P2) and (P3) imply

$$A_{n;i_1i_2\cdots i_n}^{\alpha_0,\alpha} = A_n^{\alpha_0,\alpha} F_{i_1i_2\cdots i_n} , \qquad (10)$$

with $A_n^{\alpha_0,\alpha}$ smooth and

$$F_{i_1 i_2 \cdots i_n} := \delta_{(i_1 i_2} \delta_{i_3 i_4} \cdots \delta_{i_{n-1} i_n)} = \frac{1}{n!} \sum_{\sigma \in S_n} \delta_{i_{\sigma(1)} i_{\sigma(2)}} \cdots \delta_{i_{\sigma(n-1)} i_{\sigma(n)}} . \tag{11}$$

Then we obtain

$$\partial_{\alpha} A_{n}^{\alpha_{0},\alpha} = \binom{n+2}{2} \frac{N+n}{n+1} \frac{c}{\alpha^{2}} A_{n+2}^{\alpha_{0},\alpha} - \frac{1}{2} \sum_{n_{1}+n_{2}=n+2} n_{1} n_{2} A_{n_{1}}^{\alpha_{0},\alpha} A_{n_{2}}^{\alpha_{0},\alpha} . \tag{12}$$

Remark: N=1 gives the single component case treated by Kopper in [4].

Simplification of the FEs in the m.f.a.

Simplification of the FEs in the m.f.a.

* Factor out the power counting and the combinatorial factor

$$f_n(\mu) := n \,\alpha^{2-\frac{n}{2}} c^{\frac{n}{2}-1} A_n^{\alpha_0,\alpha}, \quad \mu := \ln\left(\frac{\alpha}{\alpha_0}\right) . \tag{13}$$

The variable μ lives in the compact $[0, \mu_{\max}]$ with $\mu_{\max} := \ln \left(\frac{1}{\alpha_0} \right)$.

Simplification of the FEs in the m.f.a.

Factor out the power counting and the combinatorial factor

$$f_n(\mu) := n \,\alpha^{2-\frac{n}{2}} c^{\frac{n}{2}-1} A_n^{\alpha_0,\alpha}, \quad \mu := \ln\left(\frac{\alpha}{\alpha_0}\right) . \tag{13}$$

The variable μ lives in the compact $[0, \mu_{\max}]$ with $\mu_{\max} := \ln \left(\frac{1}{\alpha_0} \right)$.

Flow equations in the m.f.a. (inductive form)

$$f_{n+2}(\mu) = \frac{2}{n(n+N)} \partial_{\mu} f_n(\mu) + \frac{n-4}{n(n+N)} f_n(\mu) + \frac{1}{n+N} \sum_{n_1+n_2=n+2} f_{n_1}(\mu) f_{n_2}(\mu) .$$
(14)

Construction of a trivial solution

Construction of a trivial solution

* Start with this bare interaction lagrangian

$$L_0^N(\varphi) = \int d^4x \Big(c_{0,2} \varphi^2(x) + \underbrace{c_{0,4}}_{>0} \varphi^4(x) \Big) . \tag{15}$$

Construction of a trivial solution

Start with this bare interaction lagrangian

$$L_0^N(\varphi) = \int d^4x \Big(c_{0,2} \varphi^2(x) + \underbrace{c_{0,4}}_{>0} \varphi^4(x) \Big) . \tag{15}$$

Boundary conditions in the m.f.a. at the bare level ($\mu = 0$):

$$f_2(0) = 2(2\pi)^4 \alpha_0 c_{0,2}, \quad f_4(0) = 4\pi^2 c_{0,4}, \quad f_n(0) = 0, \quad n \ge 6.$$
 (16)

Construction of a trivial solution

* Start with this bare interaction lagrangian

$$L_0^N(\varphi) = \int d^4x \Big(c_{0,2} \varphi^2(x) + \underbrace{c_{0,4}}_{>0} \varphi^4(x) \Big) . \tag{15}$$

** Boundary conditions in the m.f.a. at the bare level ($\mu=0$):

$$f_2(0) = 2(2\pi)^4 \alpha_0 c_{0,2}, \quad f_4(0) = 4\pi^2 c_{0,4}, \quad f_n(0) = 0, \quad n \ge 6.$$
 (16)

- ****** IDEA: Construct the two-point function $f_2(\mu)$ such that
 - The solutions $f_n(\mu)$ constructed inductively from (14) are smooth and satisfy the boundary conditions (16).
 - The quantities $f_n(\mu_{\max})$ vanish when $\mu_{\max} \to +\infty$ i.e. $\alpha_0 \to 0$: Triviality of the mean-field theory!

Construction of a trivial solution

Construction of a trivial solution

**** Crucial ingredient**: ansatz of $f_2(\mu)$ introduced by Kopper [4] of the form

$$\sum_{n>1} b_n \frac{x_n^{n-1}}{1+x_n^n}, \quad x_n := n\mu , \qquad (17)$$

with $(b_n)_{n\geq 1}$ a sequence of real numbers so that the boundary conditions (16) are satisfied.

Construction of a trivial solution

lpha **Crucial ingredient**: ansatz of $f_2(\mu)$ introduced by Kopper [4] of the form

$$\sum_{n>1} b_n \frac{x_n^{n-1}}{1+x_n^n}, \quad x_n := n\mu , \qquad (17)$$

with $(b_n)_{n\geq 1}$ a sequence of real numbers so that the boundary conditions (16) are satisfied.

**** Aim** : Prove that $f_2(\mu)$ is well defined for $\mu \in [0, \mu_{\max}]$.

Proposition. Geometric bounds for the coefficients b_n

There exists a constant $C(N, c_{0,2}, c_{0,4}) > 0$ such that

$$|b_n| \le C(N, c_{0,2}, c_{0,4}) \frac{n^2}{2^n} , \quad n \ge 1 .$$
 (18)

Proof is done by induction using (14) and is delicate (see [9]).

Existence of a trivial solution

The trivial solution of the $\mathcal{O}(N)$ -model

Existence of a trivial solution

* From (18) the solutions $f_n(\mu)$ are well-defined for $\mu \in [0, \mu_{\text{max}}]$.

Existence of a trivial solution

- * From (18) the solutions $f_n(\mu)$ are well-defined for $\mu \in [0, \mu_{\text{max}}]$.
- ** The solutions $f_n(\mu)$ vanish in the UV-limit in the following sense:

$$\lim_{\mu_{\text{max}} \to +\infty} \partial_{\mu}^{l} f_{n}(\mu_{\text{max}}) = 0, \quad l \ge 0, \ n \ge 2.$$
 (19)

Proof is done by induction using (14) and the ansatz.

Theorem. Existence of a trivial mean-field solution

Consider a bare interaction lagrangian (15) and the corresponding mean-field boundary conditions (16) with $c_{0,2}$ and $c_{0,4}$ arbitrary constants. Then there exist smooth solutions of (14) which satisfy the boundary conditions (16) and vanish in the UV-limit.

The trivial solution of the $O(\overline{N})$ -model

Uniqueness of the trivial solution

Uniqueness of the trivial solution

**** Non-trivial point**: the solutions $f_n(\mu)$ are not analytic at $\mu = 0$! Linked to the infinite set of constraints $f_n(0) = 0$, $n \ge 6$.

Uniqueness of the trivial solution

- **** Non-trivial point**: the solutions $f_n(\mu)$ are not analytic at $\mu = 0$! Linked to the infinite set of constraints $f_n(0) = 0$, $n \ge 6$.
- ** For simplicity, take N=1. Consider the mean field effective action

$$L_{mf}^{0,\mu}(x) = \sum_{n \in 2\mathbb{N}} A_n^{0,\mu} x^n . \tag{20}$$

Proposition. Local analyticity of the mean-field effective action

Consider the solutions $f_n(\mu)$ constructed from the ansatz (17) for the fixed boundary conditions (16). Then $L_{mf}^{0,0}(x)$ is polynomial w.r.t. x and for $\mu>0$, the function $L_{mf}^{0,\mu}(x)$ is locally analytic w.r.t. x.

Idea of the proof: find bounds on the derivatives of $f_2(\mu)$, then use the FEs (14) to deduce inductive bounds on $f_n(\mu)$.

Uniqueness of the trivial solution

The trivial solution of the $\mathcal{O}(N)$ -model

Uniqueness of the trivial solution

* Idea: find an integral formulation of the mean-field FEs (14).

Uniqueness of the trivial solution

- * Idea: find an integral formulation of the mean-field FEs (14).
- ** Inspired by Felder's idea : continuum limit of the hierarchical model [10] \rightarrow Effective action u at scale $L^{-1}\lambda$, with L>1, related to the effective action at scale λ by

$$e^{-u(L^{-1}\lambda,x)} = \int d\mu_L(y)e^{-L^4u(\lambda,L^{-1}x+y)}, \quad \lambda \in (0,\Lambda_0],$$
 (21)

where μ_L is the one-dimensional Gaussian measure defined by

$$d\mu_L(y) := \frac{1}{\sqrt{2\pi(L-1)}} e^{-\frac{y^2}{2(L-1)}} dy . \tag{22}$$

Uniqueness of the trivial solution

The trivial solution of the $\mathcal{O}(N)$ -model

Uniqueness of the trivial solution

** Take the *L*-derivative of (21) and evaluate at L=1:

$$-\lambda \partial_{\lambda} u = \frac{1}{2} \partial_{xx} u - \frac{1}{2} (\partial_{x} u)^{2} + 4u - x \partial_{x} u.$$
 (23)

Uniqueness of the trivial solution

Take the *L*-derivative of (21) and evaluate at L=1:

$$-\lambda \partial_{\lambda} u = \frac{1}{2} \partial_{xx} u - \frac{1}{2} (\partial_{x} u)^{2} + 4u - x \partial_{x} u.$$
 (23)

Expansion of $u(\lambda, x)$ as a power series in x

$$u(\lambda, x) = \sum_{n \in 2\mathbb{N}} \frac{(2)^{\frac{n}{2}} f_n(\lambda)}{n} x^n , \qquad (24)$$

and setting $\lambda = \Lambda_0 e^{-\frac{\mu}{2}}$, we obtain (14): Integral formulation of the mean-field FEs \rightarrow Uniqueness of the solution u and its moments $f(\lambda)$ if *u* has a non-zero radius of convergence around *x*.

Uniqueness of the trivial solution

Theorem. Uniqueness of the trivial solution

For fixed mean-field boundary conditions (16), let $f_n(\mu)$ be the mean-field solutions of (14) constructed from the ansatz (17). Let $\tilde{f}_n(\mu)$ be solutions of the mean-field FE (14) which satisfy $f_n(0) = \tilde{f}_n(0)$. We assume that the corresponding mean-field effective action $\tilde{u}(\lambda, x)$ is locally analytic w.r.t. x for $\lambda < \Lambda_0$. Then $f_n(\mu) = \tilde{f}_n(\mu)$.

Extension to N > 1 can be done analogously (see [9] for more details).

Perspectives

** Establish a relationship between **perturbation** theory and our **non-perturbative** approach. *In preparation*.

- ** Establish a relationship between **perturbation** theory and our **non-perturbative** approach. *In preparation*.
- ** Beyond the mean-field approximation? Difficult to tackle this problem due to the momenta dependence.

- ** Establish a relationship between **perturbation** theory and our **non-perturbative** approach. *In preparation*.
- ** Beyond the mean-field approximation? Difficult to tackle this problem due to the momenta dependence.
- * Can we study fermionic fields, gauge fields?

THANK YOU FOR YOUR ATTENTION

Bibliography I

- [1]M. Aizenman. "A geometric perspective on the scaling limits of critical Ising and ϕ_d^4 models". In: (2021).
- J. Fröhlich. "On the triviality of $\lambda \phi_A^4$ theories and the [2] approach to the critical point in d > 4 dimensions". In: Nucl. Phys. B 200 (1982), pp. 281–296.
- [3] M. Aizenman and H. Duminil-Copin. "Marginal triviality of the scaling limits of critical 4D Ising and ϕ_A^4 models". In: Ann. Math. 194.1 (2021).
- [4] Ch. Kopper. "Asymptotically Free Solutions of the Scalar Mean Field Flow Equations". In: Ann. Henri Poincaré 23 (2022), pp. 3453–3492.

Bibliography II

- [5] H.E. Stanley. "Dependence of Critical Properties on Dimensionality of Spins". In: Phys. Rev. Lett. 20 (1968), pp. 589–592.
- [6] M. Moshe and J. Zinn-Justin. "Quantum field theory in the large N limit: a review". In: *Phys. Rep.* 385 (2003), pp. 69–228.
- [7]H.E. Stanley. "Spherical Model as the Limit of Infinite Spin Dimensionality". In: Phys. Rev. 176 (1968), pp. 718–722.
- J. Glimm and A. Jaffe. Quantum Physics: A Functional [8] Integral Point of View. 2nd ed. Springer New York, 1987. Chap. 9,1.

Bibliography III

- [9] Ch. Kopper and P. Wang. "Triviality proof for mean-field φ_4^4 -theories". In: *J. Math. Phys.* (to appear).
- [10] G. Felder. "Renormalization group in the local potential approximation". In: *Commun. Math. Phys.* 111 (1987), pp. 101–121.